
User Manual Thread Tapping Machine

Tauro® 120

Taurox[®] 300 / 400 / 900

www.thread-tapping.com

How to contact us

Taurox e. K.

Am Viechtberg 6 94344 Wiesenfelden Germany

Phone: +49 9966 9020245 Fax: +49 9966 9020249

E-Mail: mail@thread-tapping.com Internet: www.thread-tapping.com

Service:

E-Mail: service@thread-tapping.com

Phone: +49 9966 9020248

This user manual is an integral part of the

Typ Tauro® / Taurox®:	
Serial No:	
Year of manufacture:	

© Copyright Taurox e. K. 08.2022

EC Declaration of Conformity

Name and address of the manufacturer:

Taurox e. K.

Am Viechtberg 6 94344 Wiesenfelden Germany

This declaration relates exclusively to the machinery in the state in which it was placed on the market, and exludes components which are added and/or operations carried out subsequently by the final user. The declaration is no more valid, if the product is modified without agreement.

Herewith we declare, that the machinery described below

product denomination: Thread tapping machine

model / type: Tauro® 120 und Taurox® 300 / 400 / 900

is complying with all essential requirements of the Machinery Directive 2006/42/EC.

In addition the partly completed machinery is in conformity either the EC Directives 2014/30/EC relating to electromagnetic compatibility.

Harmonised Standarts used

DIN EN ISO 12100:2011-03	Safety of Machinery
EN 60204-1 :2007	Electrical equipment of machines
EN 61000-6-4:2007 + A1:2011	Electromagnetic compatibility (EMC) Part 6-4: Generic standards - Emission standard for industrial environments
EN 55011:2009	Industrial, scientific and medical equipment - Radio-frequency disturbance
+ A1:2010, section 6.2.2	characteristics - Limits and methods of measurement
EN 61000-6-2 :2005	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
EN 61000-3-2:2006	Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic
+ A1:2009 + A2:2009	current emissions (equipment input current <= 16 A per phase)
EN 61000-3-3:2008	Electromagnetic compatibility (EMC) - Part 3-3: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connection

The person authorised to compile the relevant technical documentation (must be established within EU)

Taurox e. K.

Mr. Janich Am Viechtberg 6 94344 Wiesenfelden Germany

Wiesenfelden, 30.08.2022	Janich Martin, owner of a firm	
Place, Date	suname, first name and function of signatory	Signature

Significance of this operator's manual

This operator's manual is an integral part of the thread tapping machine **Tauro® 120 und Taurox® 300 / 400 / 900**

- Must be kept in a way that it is always at hand until the thread tapping machine will be disposed of.
- Pass this manual on if the thread tapping machine is sold or loaned/leased out.

Read this manual before installation and operation.

This protects you and avoids damages at the machine.

In any case you encounter difficulties to clearly understand the manual, please contact the manufacturer.

Only persons with adequat technical knowledge and knowledge of this machine are allowed to install and operate the machine.

Missing or inadequate knowledge of the manual results in the loss of any claim of liability on part of **Taurox e. K.**

Taurox e. K. reserves the right to make alterations to its products in the interest of technical progress. These alterations need not be documented in every single case.

Disclaimer

This manual and the information contained herein have been compiled with due diligence. **Taurox e. K.** shall not be liable for errors contained herein or for incidental or consequential damage in connection with the furnishing, performance, or use of this material.

Description of symbols

General description of symbols

Indicates dangers which can be followed by death, heavy personal injury or substantial property damage.

Indicates a possible risk which can be followed by death, heavy personal injury or substantial property damage.

Indicates a possible risk which can be followed by minor personal injury or property damage.

Indicates a possible impending situation, which can be followed by damages at the product or in the environment.

It communicates requirements which have to be absolutely considered for an accurate operation.

Indicates applications and other useful information. It shows hints and advices for an efficient use of the machine and operation, to prevent additional work.

Additional symbol explanation

The additional symbols include always a "general symbol".

Warning of dangerous high voltage:

Indicates danger of life through high operating voltage and electrial shock, which can be followed by death.

This symbol includes also "Danger".

Warning of cutting damage:

Indicates a danger of sharp objects which can be followed by cuts. This symbol includes also "Warning".

Warning of automatically running:

Indicates a possible risk which can be followed by injuries. This symbol includes "**Warning**".

Warning of hot surface:

Indicates a possible risk which can be followed by burnings. This symbol includes "Caution".

Warning of hand injuries:

Indicates a possible risk, which can be followed by hand injuries and crush injuries.

This symbol includes "Warning".

Use eye protection:

Always wear eye protection! Indicates a possilbe risk which can be followed by heavy injuries at the eyes or can be followed by blindness. This symbol includes "Warning".

Table of contents

1	Sat	afety instructions		
	1.1	Genera	al information	10
		1.1.1 1.1.2 1.1.3 1.1.4 1.1.5	Usage as agreed upon Usage other than agreed upon Modifications and alterations Repairs and servicing Decommissioning and disposing	10 10 10 10 10
	1.2	Ensure	your own safety / emergency stop	10
		1.2.1 1.2.2 1.2.3	Malfunctions Information signs and labels Housing grounding (Earthing procedure)	11 11 11
	1.3	Residu	al dangers	11
		1.3.1 1.3.2	Hazards during operation Hazards after power is turned off	11 12
	1.4	Instruc	tions on EMI	12
2	Ted	chnica	l data	13
	2.1	Electric	cal specification	13
	2.2	Mecha	nical specification	13
		2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Mechanical specification Tauro 120 Mechanical specification Taurox 300 Mechanical specification Taurox 400 Mechanical specification Taurox 900 Weight	14 14 14 14 14
	2.3	Physica	al dimensions	15
		2.3.1 2.3.2 2.3.3 2.3.4	Physical dimensions of the control unit Physical dimensions of the machine pedestal Physical dimensions of the Tauro 120 Physical dimensions of the Taurox 300 / 400 / 900	15 16 17 18
	2.4	Operat	ing conditions	19
3	Ins	tallatio	on / Commissioning	20
	3.1	Scope	of Delivery	20
	3.2	Mecha	nical installation	20
	3.3	Elektris	sche Installation	22
	3.4	Commi	issioning	23
		3.4.1 3.4.2 3.4.3 3.4.4 3.4.5	Brief description of components Turn main switch on Tool change Adjust the counter balance Adjust the workpart and height adjustment	23 25 26 27 27

4

Op	Operation		28	
4.1	Function	ons of butto	ns	28
4.2	Task m	nenu		29
4.3	Main m	nenu, quick	reference / standard parameters	31
4.4	Main m	nenu	·	33
	4.4.1		tingo	
	4.4.1	Start set 4.4.1.1	Start with start button	33 33
		4.4.1.1	Start at workpiece zero point	33
		4.4.1.3	Start at torque detection	33
	4.4.2		ing types	34
		4.4.2.1		34
		4.4.2.2	Threading through hole	34
		4.4.2.3	Thread recutting	34
		4.4.2.4	Thread forming	34
		4.4.2.5	Insert threaded bushing	34
		4.4.2.6	Insert bolt	34
		4.4.2.7	Thread gauging	34
	4.4.3		t settings	35
		4.4.3.1	Lubricant pulse	35
		4.4.3.2	•	35
		4.4.3.3	Air cleaning pulse	35
	4.4.4	Motor se	ettings	36
		4.4.4.1	Rotating direction	36
		4.4.4.2	Reverse speed	36
		4.4.4.3	Release height	36
		4.4.4.4	Brake depth	36
		4.4.4.5	Depth progress	36
		4.4.4.6	Feed system	36
	4.4.5		parameter	37
		4.4.5.1	•	37
		4.4.5.2	Blowhole detection	37
		4.4.5.3	Counter	37
		4.4.5.4	Depth tolerance	38
	4.4.0	4.4.5.5	Tool wear	38
	4.4.6		er database	39
		4.4.6.1	Default parameters	39
	4 4 7	4.4.6.2	User defined parameters	39
	4.4.7	4.4.7.1	settings and system information	40
			Measurement unit	40
		4.4.7.2 4.4.7.3	Language	40 40
		4.4.7.3 4.4.7.4	Display brightness System temperatures	40
		4.4.7.4 4.4.7.5	System information	40
		4.4.7.5 4.4.7.6	Last error	40
		4.4.7.0 4.4.7.7	Unlock code	40
	4.4.8	Extras	Official Code	40
	1.7.0			

5	Messages	41	
	5.1 Quality notifications	41	
	5.2 Error message / status message	43	
	5.3 Error code	44	
6	Digital inputs and outputs	45	
	6.1 Technical data of inputs and outputs	45	
	6.2 Terminal connection of inputs and outputs	46	
	6.3 Wiring examples of the inputs and outputs	47	
7	Diagnostics / Troubleshooting	49	
	7.1 Troubleshooting / Error code	49	
	7.2 Contact Service	51	
8	Servicing	52	
	8.1 General maintenance work	52	
	8.2 Change air filter	52	
9	Wiring diagramn	53	
10	Appendix A: Accessories	54	
11	Appendix A1: Quick change inserts	55	
12	Appendix A2: Minimum lubricant unit 5		
13	Appendix A3: Spindle feed system 5		
14	Appendix A4: Pneumatic vice 6		
15	Appendix C: Breakage of thread tools	61	

1 Safety instructions

1.1 General information

The device complies with the applicable safety regulations and standards. Special attention has been paid to the safety of the user.

For the user are additional valid the:

- Relevant accident prevention regulations,
- · General accepted safety related norms,
- EG-norms or other country specific regulations.

1.1.1 Usage as agreed upon

The intended use includes the procedure according to these operating instructions. The device may only be operated within the limits of the specified data. (see chapter: "Technical Data").

1.1.2 Usage other than agreed upon

To use the machine in different ambient conditions as mentioned in the chapter "Operation conditions" ask the manufacturer.

1.1.3 Modifications and alterations

Based on security reasons it is not allowed to do alterations and changes at the machine and its functions.

Changings at the machine which are not allowed by the manufacturer are followed by the exclusion of liability to the company **Taurox e. K.**

1.1.4 Repairs and servicing

It is not allowed to repair the machine by the user. The machine has no parts which can be repaired by the user.

The machine has to be send to **Taurox e. K.** for repair.

1.1.5 **Decommissioning and disposing**

For the decommissioning and the disposal, the environment regulations are valid of the country the user company is placed.

1.2 Ensure your own safety / emergency stop

- Disconnect the machine of the power supply system before starting maintenance work. This avoids accidents based on electrical voltage and movable parts.
 - Please see chapter "Residual dangers "
- It is not allowed to override or avoid protection- and safety devices like protection cover and machine cover parts or thermic protection switches, emergency stop switch and motor switch.
- Dismantled protections like i.e. machine cover, fuses, emergency stop switch, motor protection switch, have to be reinstalled and to be checked for a proper function.
- The Operating panel with emergency stop switch and motor switch has to be installed in a convenient distance of the user!

1.2.1 Malfunctions

- In case of troubles or other damages immediately disconnect the machine of the power supply system.
 - Pay attention to chapter "Residual dangers "
- Report troubles or other damages immediately to a responsible person or to the company **Taurox e. K.**
- Secure the device against misuse or accidental use.

1.2.2 Information signs and labels

- Obligatory intent letterings, signs and labels and let them be readable.
- Renew damaged or not any longer readable signs and label

1.2.3 Housing grounding (Earthing procedure)

The protective conductor must be connected to the protective contact plug (at least 1.5 mm²) and the bolt of the housing grounding (at least 10 mm²) of the control unit.

High leakage current! The leakage current is higher than 3.5mA.

It is not possible to use a fault Residual Current Device (RCD) to the power supply.

Nevertheless a residual current protective device was installed, it switches the machine off despite there is no malfunction.

If it is required to use the machine with a leakage current protector an isolation transformer has to be used.

1.3 Residual dangers

1.3.1 Hazards during operation

Danger caused of high operation voltage!

Voltages up to DC 325 V appearing which are causing danger of life! These voltages lead to muscular cramps, burnings, unconsciousness, breathing arrest and death.

- During operation hold all parts of the machine closed.
- Do not open the machine.

Danger caused of hot surface!

During operation surfaces in the machine and tools can get hot.

The internal parts can reach a temperature up to 90°C.

- Never touch internal parts in the cool down phase after switch off.
- Never touch tools directly after operation in the cool down phase.

Danger in explosive substances areas!

Do not use the machine in explosive substances areas.

Danger by mechanical force influence!

The machine has a circulating spindle and movable parts.

- Depending on application fix additional protection cover.
- Secure that in case of unwantedly moving of the spindle no personell hazard can happen.
- Do not remove necessary protection covers.
- Do not wear gloves or loose clothing because of danger to hang in the rotating working spindle.
- In case of too long hears wear a suitable headgear (hairnet).
- Always wear protective goggles.
- Never touch the rotating spindle.
- Before changing the tool switch off the drive spindle by the motor switch off

1.3.2 Hazards after power is turned off

Danger by electric shock!

Capacitors in the device carry dangerous residual voltages up to 5 minutes after switching off the operating voltage.

- Always wait min. 5 minutes after switch of the machine before disconnecting the machine of the power supply system.
- To open the machine wait min. 10 min. after switch off the machine before disconnecting the machine of the power supper. (Only personal with electro technical qualification are allowed to do).

1.4 Instructions on EMI

The machine is designed for use in industrial.

2 Technical data

2.1 Electrical specification

• Voltage of the rated power supply $\sim U_{eff} = 230 \text{ V}$

• Power supply tolerance $U_{eff} = 207 \text{ V} \dots 253 \text{ V} (-10\% \dots +10\%)$

• Frequency 48 – 62 Hz

Overload protection
 Fuse 10 A T (time-lag)
 Type: (G-fuse 5x20)

Leakage current >3,5 mA

(See chapter: "Earthing procedure")

Power input permanent load
 Power input non-operated
 Digital inputs
 1,1 kW
 40 W
 3 pcs 24 V

Digital outputs
 10 pcs 24 V / 3,6 W (short-circuit proof)

Attention: Time between switch off and on of the main supply: If the driving unit was used with motor power (torque and engine speed of the motor) the starting current limitation has to cool down 2 - 3 minutes after switching off the machine. The part which causes the starting current limitation can be ruined if the a.m. was not cared about.

2.2 Mechanical specification

Spindle travel max.
Thread depth max.
Depth accuracy
0,1 mm

Finish RAL 7035 / light grey RAL 5005 / signal blue

Travel +/- 30°

2.2.1 Mechanical specification Tauro 120

Thread capacity Thread cutting

AlMg4,5Mn / 3.3547 X6CrNiMoTi17-12-2 / 1.4571

X6CrNiMoTi17-12-2 / 1.4571

Torque rangeRpm range

• Travel height adjustment

• Spindle / tool holder

M2 – M12; blind hole 2,0 x D M2 – M10; blind hole 1,5 x D

0.30 - 12 Nm50 - 2400 rpm

0 - 488 mm (Column730 mm Ø75)

quick change holder 1

2.2.2 Mechanical specification Taurox 300

Thread capacity Thread cutting

AlMg4,5Mn / 3.3547 X6CrNiMoTi17-12-2 / 1.4571

Torque range

Rpm range

• Travel height adjustment

Spindle / tool holder

M4 – M18; blind hole 2,0 x D M4 – M16; blind hole 1,5 x D

1,4 – 30 Nm

25 - 800 rpm

0 – 425 mm (Column 730 mm Ø75)

quick change holder 1

2.2.3 Mechanical specification Taurox 400

• Thread capacity Thread cutting

AlMg4,5Mn / 3.3547 X6CrNiMoTi17-12-2 / 1.4571

Torque range

Rpm range

Travel height adjustment

• Spindle / tool holder

M5 – M18; blind hole 2,0 x D M5 – M16; blind hole 1,5 x D

2 – 40 Nm

25 - 600 rpm

0 - 425 mm (Column Ø75 / L730 mm)

quick change holder 2

2.2.4 Mechanical specification Taurox 900

 Thread capacity Thread cutting AIMg4,5Mn / 3.3547

X6CrNiMoTi17-12-2 / 1.4571

Torque range

Rpm range

Travel height adjustment

• Spindle / tool holder

M6 – M22; blind hole 2,0 x D M6 – M18; blind hole 1,5 x D

8 – 90 Nm

25 - 250 rpm

0 - 425 mm (Column Ø75 / L730 mm)

quick change holder 2

2.2.5 **Weight**

•	Machine pedestal	approx.	30.0 kg
•	Column Ø75 / L730 mm with column flange Tauro 120	approx.	19.5 kg
•	Column Ø75 / L730 mm with column flange Taurox 300 - 900	approx.	19.7 kg
•	Control unit	approx.	14.5 kg
•	Operating panel	approx.	1.2 kg
•	Tauro 120 (Drive unit without spindle feed system)	approx.	14.6 kg
•	Taurox 300 (Drive unit without spindle feed system)	approx.	25.1 kg
•	Taurox 400 (Drive unit without spindle feed system)	approx.	25.7 kg
•	Taurox 900 (Drive unit without spindle feed system)	approx.	26.1 kg
•	Spindle feed system	approx.	0.5 kg

2.3 Physical dimensions

2.3.1 Physical dimensions of the control unit

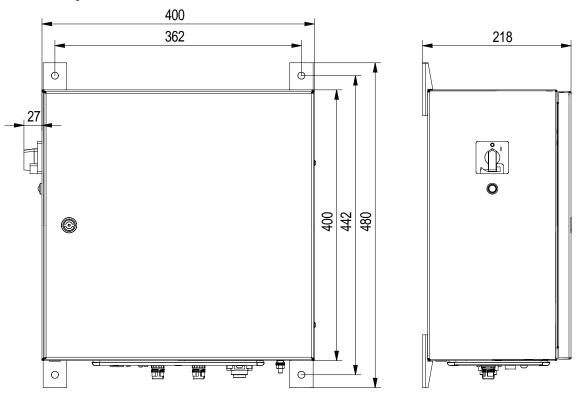


Fig.: 2.1 View of the control unit

2.3.2 Physical dimensions of the machine pedestal

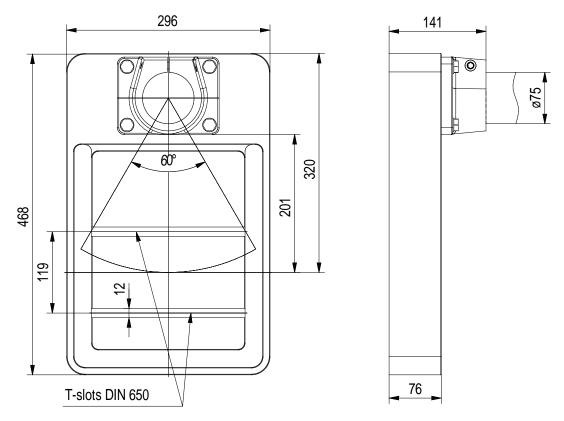


Fig.: 2.2 View of the machine pedestal

2.3.3 Physical dimensions of the Tauro 120

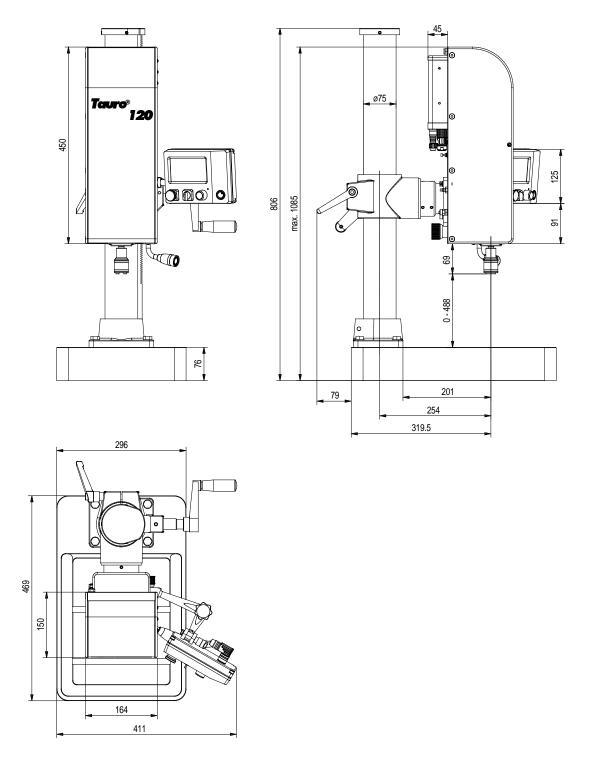


Fig.: 2.3 View of the thread tapping machine Tauro 120

2.3.4 Physical dimensions of the Taurox 300 / 400 / 900

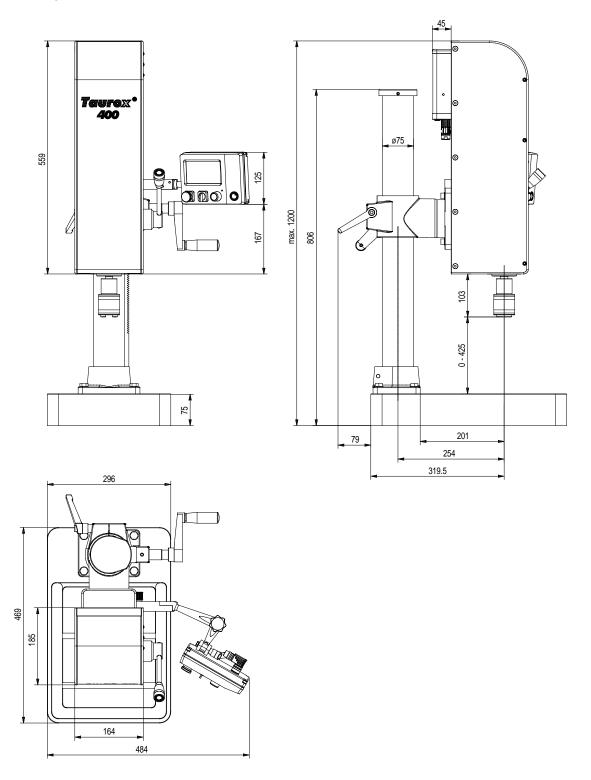


Fig.: 2.4 View of the thread tapping machine Taurox 300 / 400 / 900

2.4 Operating conditions

Transport conditions
 Temperature: -25°C - 70°C

Air humidity: 5% - 95% (non-condensing)

Storage conditions
 Temperature: -25°C - 70°C

Air humidity: 5% - 95% (non-condensing)

Maximum storage period: < 1 year without restrictions

Ambient temperature 5 - 45°C

Atmospheric moisture
 5% - 80% (non-condensing)

Operating altitude
 1000 m max. above sea level from 1000 to 2500 m

above sea level; derating 1.5 % per 100 m increase

in altitude.

Degree of protection IP 54

Protection class

Corrosion immunity / No special protection against corrosion.

Chemical resistance Ambient air must be free from higher concentrations

of acids, alkaline solutions, corrosive agents, salts,

metal vapours, or other corrosive or electro

conductive contaminants.

Compressed-air (unoiled)
 Spindle feed system

Spindle feed system 58 - 116 psi (4 - 8 bar)Minimum lubricant unit 58 - 87 psi (4 - 6 bar)

Tayrox*

3 Installation / Commissioning

3.1 Scope of Delivery

- (1) Control Unit (CU)
- (2) Operating Panel with hinged bracket (OP)
- (3) Drive Unit Tauro 120, Taurox 300 / 400 / 900 (AE)
- (4) Column with travel height adjustment
- (5) Machine pedestal
- Mains cable (2 m)
- Motor power cable CU-DU (3 m)
- Data cable CU-DU (3 m)
- Data cable CU-OP (3 m)
- Attachment Tauro 120: screw 3 pcs. M6x22; Washer 3 pcs Ø 6,4; screw 2 pcs. M5x16
- Attachment Taurox 300 / 400 / 900: screw 4 pcs. M8x35; Washer 3 pcs. Ø 8,4; screw 2 pcs. M5x16; screw 2 pcs. M6x22
- User manual

3.2 Mechanical installation

- Verify if all parts of the delivery are available complete.
- Before installing the machine verify if the machine or the accessories have transport damages.
- Verify if the installation underground is plane (installation surface).
- Verify the minimum load capacity. (See chapter: "weight")
- Verify the operation conditions. (See chapter: "Operation conditions")
- Verify the electrical specification. (See chapter: "Electrical specification")
- Fix the machine pedestal (5) with 3 pieces screws M12 on the installation surface. (Dimensions see chapter: "Mechanical dimensions "machine pedestal")

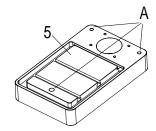
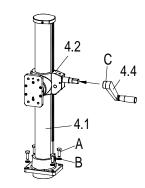


Fig.: 3.1

- Push the column (4.1) into the machine pedestal (5).
- Fix the screws (A) M10 with washer (B) with a torque of 29 Nm.
- Push the crank (4.4) of the column flange (4.2) and clamp the screw (C).



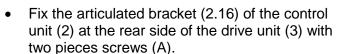


Fig.: 3.2

• Clamp the clamping lever (4.3).

- To avoid damages position a foam (B) or something similar on the machine pedestal (5).
 Take care that the distance between foam (B) and quick change holder (3.1) is not too large.
- Put the screws
 - Tauro 120 3pcs. DIN912 M6x22
 - Taurox 300 / 400 / 900 4 pcs. DIN912 M8x35 with washer (A) through the drilling of the column flange (4.2).
- Push the drive unit (3) onto the dowel pin of the column flange (4.2) and screw one screw down light.
- Screw down the screws (A) with a torque of
 - 10 Nm (Tauro 120)
 - 18 Nm (Taurox 300 / 400 / 900)
- Remove the foam.
- Position or install the control unit at a suitable position that way that the cables are not exposed soiling's directly.
 Install the control unit vertical with the fixation to the wall (1.4) on the work bench or a wall. (Dimension see chapter: "Mechanical dimensions control unit")

- DIN912 M5x16 (Tauro 120)
- DIN912 M6x22 (Taurox 300 / 400 / 900)

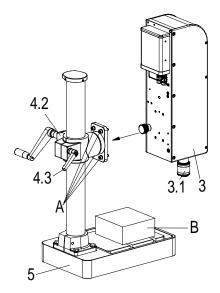


Fig.: 3.3

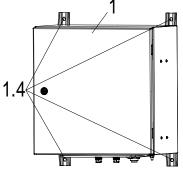


Fig.: 3.4

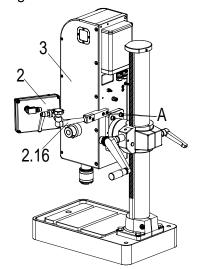
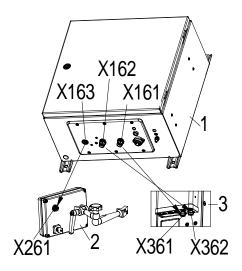



Fig.: 3.5

3.3 Elektrische Installation

- Connect the motor power connector X161 of the control unit (1) with the motor power cable CU-DU (4 pol) with the motor power connector X361 of the drive unit (3).
- Connect the data connector CU X162 of the control unit (1) with the data cable CU-DU (17 pol.) with the data connector DU X362 of the drive unit (3).
- Connect the data connector CU X163 of the control unit (1) with the Data cable CU-OP (7 pol.) with the data connector OP X363 of the drive unit (3).

- The thread tapping unit has a discharge current more than 3,5mA.
 - To avoid electrical electromagnetic interference and electric shock an installation of a second earth wire is necessary (see chapter: " Housing grounding ")
- Connect the grounding screw M6 of the cover grounding X164 of the control unit (1) with an earth wire with the earth connection (min. 10 mm², cable length 2 m).
- Connect the power cable with the connector X160 of the control unit (1).
- Do **not** plug in the safety plug of the power cable! (see chapter: "Installation")

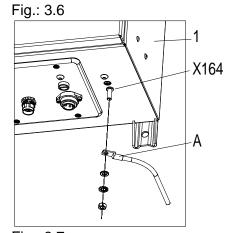


Fig.: 3.7

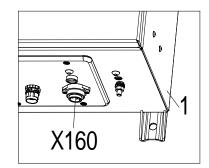


Fig.: 3.8

3.4 Commissioning

• **Important!** In case of immediate deviation of the operation conditions before installation take care that the temperature and the humidity have to be harmonised for 24 hours!

3.4.1 Brief description of components

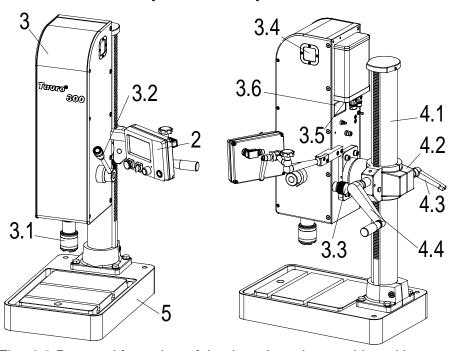


Fig.: 3.9 Rear and front view of the thread tapping machine with operating panel (Taurox® 300/ 400 / 900)

- (2) Operating panel (See chapter: "Operation")
- (3) Drive unit Taurox 120
- (3.1) Quick change holder
- (3.2) Operating lever with start button
- (3.3) Adjustment wheel for the spindle counter balance system
- (3.4) Air cleaner for cooling system (in)
- (3.5) Air cleaner for cooling system (out)
- (3.5) Type plate
- (4.1) Column
- (4.2) Column flange
- (4.3) Clamp lever for column flange
- (4.4) Crank for column
- (5) Machine pedestal

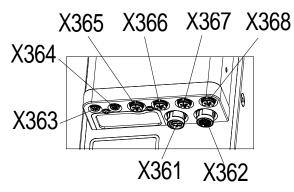


Fig.: 3.10 Connector (Rear view) of the drive unit

(X361)	Motor power connector
(X362)	Data connector DU
(X363)	Input foot switch (black)
(X364)	Input automation (black)
(X365)	Output signal column (black)
(X366)	Output automation (red)
(X367)	Output air cleaning unit (blue)
(X368)	Output lubricant unit (green)

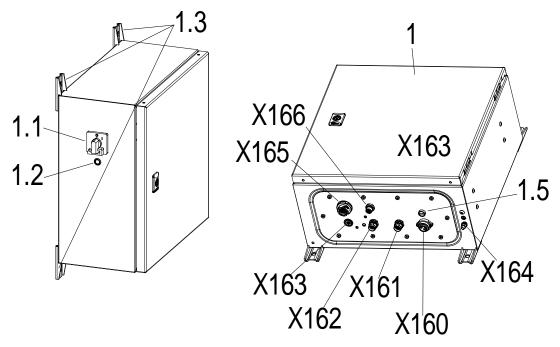


Fig.: 3.11 Rear and front view of the control unit

(1)	Control unit
(1.1)	Main switch
(1.2)	Control lamp for main switch
(1.3)	Mounting foot
(1.5)	Fuse 10 A T (time-lag); Type: (G-fuse 5x20)
(X160)	Main connector
(X161)	Motor power connector
(X162)	Data connector DU
(X163)	Data connector OP
(X164)	Earthing screw of the earthing of the housing
(X165)	Connector RJ45 ethernet (accessories)
(X166)	Connector Emergency stop and spindle lock external (accessories)

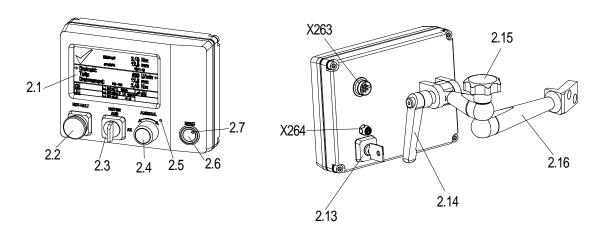
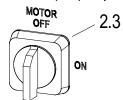


Fig.: 3.12 Rear and front view of the Operating panel

(2)	Operating panel
(2.1)	Display
(2.2)	Emergency stop
(2.3)	Motor switch
(2.4)	Rotary knob with button
(2.5)	Rotary knob LED
(2.6)	Menu button
(2.7)	Menu button LED
(2.13)	Key switch (accessories)
(2.14)	Clamp lever for vertical adjustment
(2.15)	Star grip for clamping the horizontal adjustment
(2.16)	Hinged bracket
(X263)	Data connector OP
(X264)	Operation lock external / 3 pol concector M8x1 (accessories)


3.4.2 Turn main switch on

Secure that the machine is not damaged and the mechanical and electrical installation was realised in a workmanlike manner.

- Switch on the main switch (1.1). The control lamp (1.2) starts burning.
- A start screen appears just until the start process is finished. (approx. 13 seconds).
- The display changes to the working menu. (See chapter: "Operation")
- The machine is ready to work now.

3.4.3 Tool change

1. Switch the motor switch (2.3) to position OFF.

The message "Motor Off" appears in the display.

Warning: The motor switch (2.3) has to be on position OFF because the drive spindle can start running.

Warning: Tools are sharp and can cause injuries.

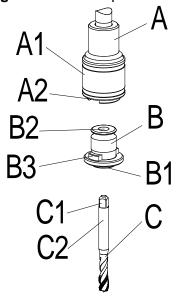
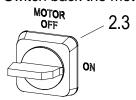
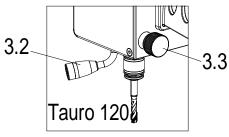




Fig.: 3.13

- 2. Unclamp tool (C)
 - Hold the quick change insert (B) with one hand and pull up the pressure cover (A1).
 The quick change insert will be unclamped in this way.
 - Press the spring dowel pin (B1) of the quick change insert (B) and remove the thread tool. (C).
- 3. Insert tool (C)
 - Insert the thread tool (C) into the quick change insert (B).
 The square (C1) of the thread tool has to snap in the square (B2) of the quick change insert (B).
 - Plug the quick change insert (B) in the quick change holder (A).
 The nose (B3) has to snap in the nut (A2). By doing this the pressure cover slips down and clamps the quick change insert (B).
- 4. Switch back the motor switch (2.3) to the position ON.

3.4.4 Adjust the counter balance

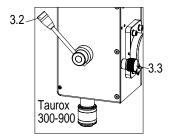


Fig.: 3.14

The retraction force of the drive spindle can be set by the adjustment wheel (3.3). Pull down the drive spindle by the operating lever (3.2).

If you release the operating lever (3.2) the drive spindle should be brought back in the end position by its own because of the balance system. Take care that the retraction force is not set to high!

Attention!

A too powerful retraction force reduces the lifetime of the thread tool and can affect the quality of the working process.

Attention

By turning the adjustment wheel to the right side the retraction force of the drive unit becomes stronger.

3.4.5 Adjust the workpart and height adjustment

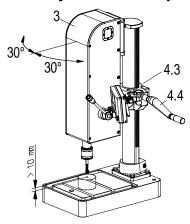
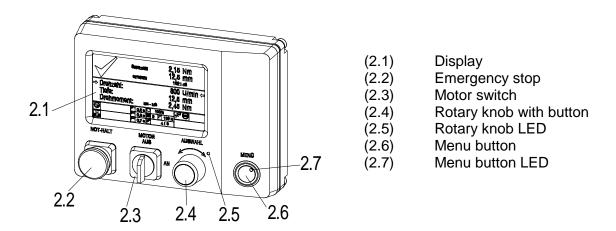


Fig.: 3.15

- Open the clamping lever (4.3).
- Position the distance between spindle and workpiece higher than 10 mm with the hand crank (4.4).
- It is possible to swivel the drive unit (3) around 30° to the left and to the right at a time.
- Clamp the clamping lever (4.2).
- Secure the workpiece against torsional stiffness and unwanted moving. Use only suitable clamping devices.



Danger: Workpieces can turn with the tool and threaten peoples and machines.

Danger

4 Operation

4.1 Functions of buttons

- (2.1) The full colour 4.3 "TFT display shows operating parameters, processing results, error and fault messages.
- (2.2) The emergency stop button switches off the motor and feed after actuation. You can unlock the emergency stop button by pulling it.

 The machine can be restarted after a waiting time of 2 3 minutes

Attention: Time between deactivating and activating the mains power supply If, after running the drive by means of engine power (speed and torque at the motor), the power supply has been switched off, the inrush current limitation must cool down for 2 - 3 minutes. If this is not given heed to, the component causing the inrush current limitation can be destroyed.

Note: If the emergency stop has been engaged during process, the tool can be removed from part with the function safe reverse movement, executed by pressing the start button after emergency stop has been disengaged and the machine has been switched on again.

(2.3) The **motor switch** is used to lock the spindle (eg: tool change).

Attention: Time between engaging and disengaging the motor switch should not be less than 2 - 3 minutes. Otherwise the drive might become damaged. (Tauro120 und Taurox 300 / 400 / 900)

- (2.4) The **rotary knob** with button is used to select, to adjust parameters and to confirm the measures and commands.
- (2.5) The **rotary knob LED** shows the current function of rotary knob with button (2.4). Rotary knob LED on (2.4) shows activation of rotary knob.
- (2.6) By pushing the **menu button** you enter the main menu and go back to the task menu.
- (2.7) **Menu button LED** on displays activation of menu button (2.6).

4.2 Task menu

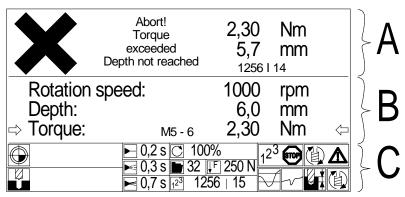
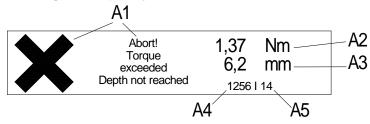



Fig.: 4.1

A Message and quality level

A1 messages (See chapter: "messages")

A2 torque reached

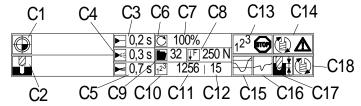
A3 depth reached

A4 day counter i. O. (green)

A5 day counter n. i. O. (red)

B Adjustment level

Rotation speed working speed Depth working depth


Torque maximum torque for the working process.

The mentioned thread size is only reference value!

The torque has to be under the breakage data of the tool.

C Parameter level

The parameter area is used to display set parameters and additional messages.

- C1 Start settings / Start with start button
 - Start settings / Start at workpiece zero point
 - Start settings / Start at torque detection
- C2 Processing type / Threading blind hole
 - Processing type / Threading blind hole / Chip breaking
 - Processing type / Threading through hole
 - Processing type / Thread recutting
 - Processing type / Thread forming
 - Insert threaded bushing
 - Stop parameter: Torque
 - Stop parameter: Depth
 - Processing type / Insert bolt
 - Stop parameter: Torque
 - Stop parameter: Depth
- Processing type / Thread gauging
 C3 Lubricant settings Lubricant pulse active / time
- C4 Lubricant settings Air pulse active / time
- C5 Lubricant settings Air cleaning pulse active / time
- C6 Rotating direction right Rotating direction left
- C7 Reverse speed at %
- C8 Feed force in N (only with feed for spindle infeed)
- C9 Data set number 0 99
- C10 123 Workpiece counter
- C11 Workpiece counter (Number of pieces)
- C12 threads counter per pro workpieces (Number of pieces)
- C13 Message counter STOP
- C14 Message Tool wear Warning Tool wear reached
- C15 Quality parameter /Torque window active
- C16 Quality parameter / Blowhole detection active
- C17 Quality parameter / Depth tolerance active
- C18 Quality parameter / Tool wear active

4.3 Main menu, quick reference / standard parameters

The main menu is divided into several levels.

The levels can also be represented by a path in the instructions. The last information can also be a setting.

(eg: main menu/engine settings/direction/right)

```
Task menu
Main menu
Level 1
Level 2
Level 3
Level 4
```

Task menu

Rotation speed: 1000 rpm (Value range see technical data)

Depth: 6,0 mm (Value range see technical data)
Torque: 1,00 Nm (Value range see technical data)

Main menu

```
Start settings
```

```
Start with start button: on
Start at workpiece zero point: on
10,0 mm Set tool to zero point and confirm value
Start at torque detection: on
0,50 - 2,50 Nm
```

Processing types

```
Chip breaking: off / on

1,0 - 50,5 mm first chip breaking

0,5 - 25,0 mm interval

45° / 90° / 180° / 270° / 0,5 - 12,5 mm chip clearance- (depth)

Reversions: off / on
```

3 - 15 per cut

Threading through hole: on

Threading blind hole: on

Thread recutting: on

10 - 90% torque reduction 0.2 - 80.0 mm stop depth

Thread forming: on

Insert threaded bushing: on

Stop parameter: Torque / Depth

Insert bolt: on

Stop parameter: *Torque / Depth*

Thread gauging: on

10 – 4000% torque elevation

Lubricant settings

```
Lubricant pulse: off/on
0,1-3,0 seconds
test continuous puls
Air pulse: off/on
0,2-3,0 seconds
Air cleaning pulse: off/on
0,3-3,0 seconds
```

```
Motor settings
       Rotating direction: right / left
       Reverse speed: 20 - 1000%
       Release height: off / on
              2,0 - 80,0 mm above workpiece surface
       Brake depth: off / automatic / manuel
              0.0 - 6.0 mm (manuel)
       Depth progress: 0 - 10 responsivity (0 = off, 10 = very sensitive)
       Feed system: 0.5 - 99.9 proof rotation
Quality parameter
       Torque window: off / on
              0,03 - max. Nm (Torque)
              0,1 - max. Tiefe mm start depth
              0,2 - max. Tiefe mm stop depth
       Minimal torque: off / on
              0,03 - max. Nm (Torque)
       Blowhole detection: off / on
              5 - 95% torque decay
              1,0 - max. Tiefe mm stop depth
       Counter: Day counter / Workpiece counter
              Day counter: reset
              Workpiece counter: off / on
              Abbruch nach confirmation / a faulty thread / a faulty workpiece
              1 – 32000 workpieces
              1 – 250 threads per workpiece
              reset
       Depth tolerance: off / on
              0.0 - 3.5 \, \text{mm}
       Tool wear: off / on
              5 – 99% Wear limit
Parameter database
       Default parameters: load
       User defined parameters
              0 - 99 data set
              Load
              overwrite
System settings and system information
       Measuring unit: mm / inch
       Language: german / english / spanish
       Display brightness: (without function)
       System temperatures: (without function)
       System information: (Display)
               1: software release: Control Unit
               2: software release: Operating Panel
               3: software release: Display
               4: software release: Drive Unit
              12: piece counter Machine
       Last error: (Display of processing message)
               1: first error
               2: second error
               3: third error
               4: fourth error
       Unlock code: (without function)
Extras: (without function)
```

4.4 Main menu

→ Start settings
 Processing types
 Lubricant settings
 Motor settings
 Quality parameters
 Parameter database
 System settings and system information
 Extras

4.4.1 Start settings

The start settings can only be set to `"on". The previous startup setting is set to "off" by selecting a different startup setting to "on".

4.4.1.1 Start with start button

Option: on

4.4.1.2 Start at workpiece zero point

Option: on and enter parameter

Enter parameter. Run the tool with the control handle in the bore. The value is saved after 2 seconds (without movement. You can also save the value via the rotary knob button (2.4) or via the start button (3.2). The display automatically changes to the task menu.

You can also reach this function via the quick selection if the function is already active. To do this, press and hold the menu button for one

4.4.1.3 Start at torque detection

Option: on

You can set the *starting torque* for torque detection.

Start with torque detection only works in the machining modes:

- Threading blind hole
- Threading through hole

second in the work menu.

- Thread forming

4.4.2 Processing types

The types of processing can only be set to "on". The previous setting is set to "off" by selecting a different startup setting to "on".

4.4.2.1 Threading blind hole

Option: on

You can set chip breaker settings and reversions.

4.4.2.1.1 Chip breaking

Option: off / on

You can set the following values after power on:

- first chip breaking (first chip breaking depth in mm)

- interval (interval depth in mm)

- chip clearance depth (chip break angle or depth to the

workpiece zero point, which should be

turned back by chip breaking.)

4.4.2.1.2 Reversions

Option: on / off

Option: 3 - 15 (maximum number of reversing)

4.4.2.2 Threading through hole

Option: on

The brake depth function is automatically set to off. (Can be activated.)

4.4.2.3 Thread recutting

Option: on

You can adjust the torque reduction during the lead-in chamfer.

(10 - 90%).

A *stop depth* is used to determine the point at which the torque reduction

is switched off.

4.4.2.4 Thread forming

Option: on

4.4.2.5 Insert threaded bushing

Option: on

You can select the shutdown parameters:

Option: torque stop parameter / depth stop parameter

4.4.2.6 Insert bolt

Option: on

You can select the shutdown parameters:

Option: torque stop parameter / depth stop parameter

4.4.2.7 Thread gauging

Option: on

You can set a torque elevation for the return stroke.

(10 - 4000%)

4.4.3 Lubricant settings

4.4.3.1 Lubricant pulse

Option: on / off

You can set the time from 0,1 to 3,0 seconds.

Option: test continuous puls

When selected, the lubrication pulse is clocked. If the air pulse is active,

it is also clocked.

This function is used to test and vent the lubrication system.

4.4.3.2 Air pulse

Option: on / off

You can set the time from 0,2 to 3,0 seconds. Air pulse starts with the lubrication pulse.

4.4.3.3 Air cleaning pulse

Option: on / off

You can set the time from 0,3 to 3,0 seconds. The impulse start takes place when the processing is finished.

4.4.4 Motor settings

4.4.4.1 Rotating direction

Option: right / left (right / left hand thread)

4.4.4.2 Reverse speed

Option: 20% to 1000%

rpm is always limited to the minimum or maximum rpm.

4.4.4.3 Release height

Option: on / off

You can set a height (of 5 mm to maximal travel) above the workpiece zero point. The release height is a virtual end position at which the machine can already be restarted.

(When the enabling height is reached, output X367/3 is set to high).

4.4.4.4 Brake depth

Option: off / automatic / manual

Machine calculates brake depth during processing. This is necessary for careful processing. Due unfavorable processing parameters (eg, low torque, high speed, high pitch), depth can be exceeded. Avoid this by changing the processing parameters, or adjusting the brake depth.

- off brake depth is off (eg for applications with high

processing sequences of through threads).

- automatic brake depth is automatically calculated by the machine

during processing.

- manual brake depth can be adjusted manually in low processing

parameters.

4.4.4.5 Depth progress

Responsivity: 0 - 10

0 = off

10 = very sensitive

The depth advance compares the rotary movement with the feed movement during machining. If the feed movement is not sufficient, the drive stops immediately.

4.4.4.6 Feed system

Proof rotation: 0.5 - 99.9

You can set after how many revolutions the feed should decouple (after gate). This means that there is no pressure on the thread. At 99,9, the feed presses until the end of the thread.

4.4.5 Quality parameter

4.4.5.1 Torque window

Option: off / on

It is possible, if confirmed, to set *torque tolerance* starting *from 0.1 Nm*. Torque used during processing must not exceed maximum torque in the task menu and the maximum torque, less torque tolerance.

Measuring range is set between *start depth* and *stop depth*.

(stop depth e.g. for tap clearance hole) (See chapter: "Quality Notifications")

4.4.5.2 Blowhole detection

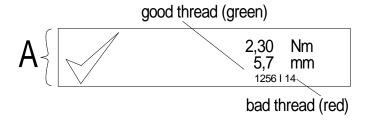
Option: on / off

You can set the *torque decrease in* % (5 - 95%). End of the measuring range is set by stop depth.

(stop depth e.g. for tap clearance hole)

(See chapter: "new messages")

4.4.5.3 Counter


4.4.5.3.1 Day counter

Option: on

You can *reset* the day counter.

The day counter is **not** reset when the machine is switched on.

Display while processing:

4.4.5.3.2 Workpiece counter

Option: off / on

You can set different counter variants and values.

Option:

Abort after confirmation - The last part can be reset in case of an error by confirming the start button.

Abort after a faulty thread - Last thread **must** be reset by confirming the start button in case of an error. The next processing is blocked. The display shows the following message in parameter area C13

Abort after a faulty workpiece - The last part **must** be reset by confirming the start button in case of an error after finishing the machining of the part.

The machining is blocked after the last thread of the part.

The display shows the following message in parameter area C13

123

workpieces -set quantity (1 – 32000) threads per workpiece – set (1 – 250) reset of counted workpieces

When the number of parts has been reached, the display shows 12^3 . This message must be reset by confirming the start button.

Display while processing:

C10 Workpiece counter active
C10 C11 C12

C10 Workpiece counter (number of pieces)
C12 Thread counter per part (number of pieces)

4.4.5.4 Depth tolerance

Option: off / on

You can set the depth tolerance from 0 mm - 6 mm.

(See chapter: "Quality messages")

4.4.5.5 Tool wear

Option: off / on

You can set the wear limit from 5% - 99%.

The machine internally makes a statistical evaluation of the torque values reached.

When a number of exceedances is reached, the message

Tool wear warning" is displayed.

When the wear limit is reached, the message

"Tool wear reached" is displayed and the next machining operation is blocked.

This message must be reset by confirming the start button in the end position.

(See chapter: "Quality messages")

4.4.6 Parameter database

4.4.6.1 Default parameters

Option: load

It is possible, if confirmed, to reset the entire parameters to default

parameters. (See chapter: "default parameters")

During the charging process LED 2.7 of the menu key is off and operation is blocked.

The record number "0" is displayed in parameter area C9 in the operating menu.

4.4.6.2 User defined parameters

Option: data set

After selecting the data set number it is possible to *load* or to *overwrite* this data set.

During the charging process LED 2.7 of the menu key is off and operation is blocked.

In the operating menu the record number is displayed in parameter area C9.

4.4.7 System settings and system information

4.4.7.1 Measurement unit

Option: mm / inch

4.4.7.2 Language

Option: german / english / spanish

4.4.7.3 Display brightness

(without function)

4.4.7.4 System temperatures

(without function)

4.4.7.5 System information

- 1: software release: Control Unit
- 2: software release: Operating Panel
- 3: software release: Display
- 4: software release: Drive Unit
- 12: piece counter Machine

4.4.7.6 Last error

Display: last error of processing message (number for service)

- 1: first error
- 2: second error
- 3: third error
- 4: fourth error

4.4.7.7 Unlock code

(without function)

4.4.8 **Extras**

No extras installed

5 Messages

5.1 Quality notifications

Quality notifications " Good "

Quality good.

Quantity achieved

Quality good, Quantity has been achieved.

Quality notifications "Abort"

Abort! User Processing canceled by user using manual start button or foot switch.

Abort! No depth progress Spindle has not progressed at processing start during certain period of time.

Abort! Torque exceeded in reverse Torque has been exceeded in reverse.

Drive spindle stops.

Drive spindle can be reversed in safety reverse mode with 50 rpm by using start button.

Abort!
Maximum number
of reversions
Depth not reached

Threading blind holes:

The set number of reversions has been exceeded. e.g. tool wear, grounding, improper cutting speed Path: Main Menu/Engine Settings/Reversions

Abort!
Torque
exceeded
Depth not reached

Threading canceled!

Threading through hole: Processing will be stopped immediately after exceeded torque.

Threading blind holes: Tool has reversed 3 times without progress in depth.

e.g.: grounding

Quality notifications "Error"

Error! Gating The infeed of drive spindle was moved in positive direction after setting the zero point. (in direction up)

Error! Below torque range The torque has slightly dropped during processing. e.g.: pipe cavities or air pockets in cast material Path: Main menu/Quality Parameters/Pipe Cavities

Error! Blowhole detected The torque has slightly dropped during processing. e.g.: pipe cavities or air pockets in cast material Path: Main menu/Quality Parameters/Pipe Cavities

Error! Depth tolerance exceeded Adjusted depth tolerance was exceeded.

Thread with large pitch, high speed and low torque is being processed,.

Change depth tolerance, correct the speed or set the brake depth manually (See chapter "Operation")

Path: Main Menu/Quality Parameters/Depth tolerance

5.2 Error message / status message

Emergency stop button (2.2) has been operated.

Check and correct malfunction. Unlock (pull) emergency stop button

Motor OFF!

Engine switch has been operated. Drive spindle is locked! Machine ready again for processing by turning the motor switch (2.3).

Attention! Spindle not in initial position Spindle is not in initial position after power or exiting a menu position.
Run back spindle into initial position.

Attention! Feed does not react The feed does not react after starting the foot switch.

Check the air supply.

Attention! process distance covered

The maximum travel range of the drive unit was reached.

Correct the infeed travel.

5.3 Error code

An hardware error has arrived. (See chapter " Troubleshooting / Error code")

6 Digital inputs and outputs

6.1 Technical data of inputs and outputs

• Digital inputs 3 pcs:

Type of Inputs digital isolator Rated voltage 24 VDC +/- 10%

Voltage range 0...30 V
Input current approx. 0,5 mA
Signal voltage on min. 15 V
Signal voltage off max. 5 V

Delay input > 10 ms (0 to 1 and 1 to 0)

Potential separation none

Protective circuit short-circuit proof, thermal cut-out, inverse-polarity

protection

Connection circular connector Ø 11,5 / IP67

cable bushing 3 - 5 mm

terminal cross-section max. AWG 24 / 0,25 mm²

Note: A digital exit of a PLC control can be layed directly (without additional load) to a digital input.

Proximity switches (e.g. inductive proximity switches PNP) can be connected to a digital input directly.

Digital outputs 10 pcs:

Digital outputs 24 VDC / 3,6 W (short-circuit proof)

Type of outputs transistor

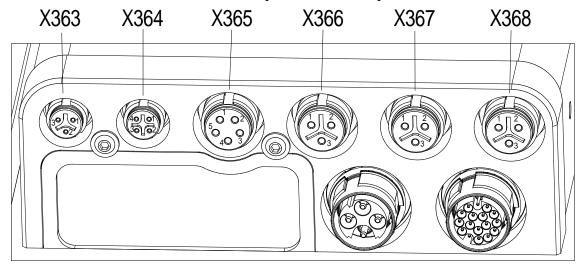
Rated voltage 24 VDC +/- 10% Rated current 150 mA per output Rated burden 3,6 W per output

Potential separation none

Protective circuit short-circuit proof, thermal cut-out, inverse-polarity

protection

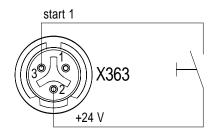
Connection circular connector Ø 16 / IP67


cable bushing 4 - 6mm (2,5 - 4 / 6 - 8 optional) terminal cross-section max. AWG 20 / 0,75 mm²

Note: A digital exit can be layed directly (without additional load) to a digital input of a PLC control.

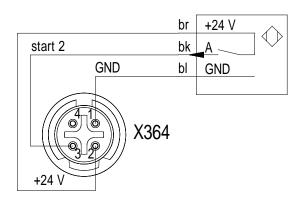
Valves can be connected to a digital exit directly.

6.2 Terminal connection of inputs and outputs

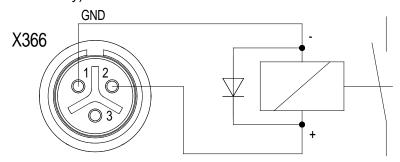

connector	description	Rated current	max current (<3 sec.)
X363 / 1 2 3	Input foot switch (black) *1 GND 24V Input start 1 (foot switch)	75 mA	90 mA
X364 / 1 2 3 4	Input automation (black) *1 GND 24V Input start 2 Input start button 2	75 mA	90 mA
X365 / 1 2 3 4 5	Output quality / QA (black) *2 GND Output signal horn Output process NOK (red) Output processing ongoing (orange) Output process OK (green)	150 mA 150 mA 150 mA 150 mA	180 mA 180 mA 180 mA 180 mA
X366 / 1 2 3	Output automation (red) *3 GND Output clamp thread Output clamp workpiece	150mA 150mA	180mA 180mA
X367 / 1 2 3	Output air cleaning unit (blue) *4 GND Output air cleaning pulse Output ready signal	150 mA 150 mA	180 mA 180 mA
X368 / 1 2 3	Output lubricant unit (green) GND Output lubricant unit air Output lubricant unit pulse	150 mA 150 mA	180 mA 180 mA

 ^{*1} Only with accessories feed system for the spindle.
 *2 Only with accessories signal column, signalbar or additional accessories.
 *3 Accessories.
 *4 Only with accessories Minimum lubricant unit with air cleaning pulse or additional accessories.

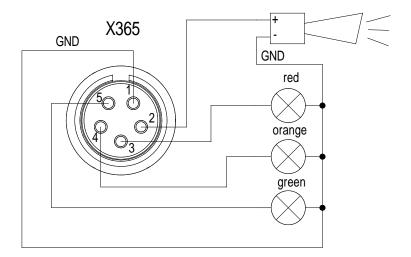
6.3 Wiring examples of the inputs and outputs


 Requirements input: The external start pulse of the thread tapping unit should happen by an external manual button. (Only with feed system for the spindle) Attention: By operating "Stop! User" during the operation the operation can be cancelled.

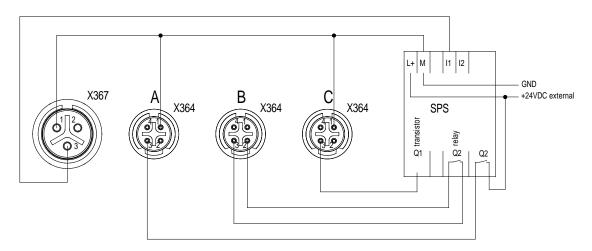
This function is no **Emergency Stop** function!



 Requirement input: The external start puls of the thread tapping unit should happen by an inductive proximity switch.
 (Only with feed system for the spindle)


Wire the input automation (X364/3 Start 2) with an inductive proximity switch PNP.

• Requirement exit: A relais or a valve for a clamping unit should be connected. Wire the exit automation (X366) with a relais or a valve. Respect the direction of the freerunning diode if present. (A freerunning diode is not neccessary)



• Requirement exit: A warning lamp with horn should be installed for quality control. Wire the exit signal column (X365) with various lamps and horn. (You can order a signal column with horn as accessory)

 Requirement input and exit (PLC): The thread tapping unit should be integrated in automation by a PLC control.

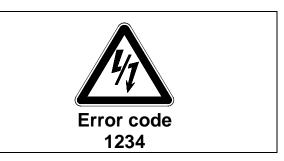
Wire the exit of X367/3 ready and the input X364/3 Start 2 to a PLC - unit.

Option A:

The input of the thread tapping unit is connected to a relais exit of a PLC control. (external power supply)

Option B:

The input of the thread tapping unit is connected to a relais exit of a PLC control. (internal power supply)


Option C:

The input of the thread tapping unit is connected to a transistor - exit of a PLC control.

7 Diagnostics / Troubleshooting

7.1 Troubleshooting / Error code

Display on the screen (2.1)

An hardware error occurred. Based on the following list check the error code numbers and proceed as follows.

Problem / Error code	Reason	Retification
The control lamp	- No power supply	- Check the voltage supply
(1.2) doesn't shine	- Hardware error	- Check the saftey fuse (1.5)
No display in the	- No power supply	- Check if the control lamp (1.2) is shining
screen (2.1)	- Cable dective	- Check the data cable OP between the
	- Hardware error	connectors X163 and X261
1001	- Hardware error	- Check the data cable OP between the
1002		connectors X163 and X261
1003	- Hardware error	- Check the data cable DU between the
		connectors X162 and X362
1004	- Hardware error	- Inform the technical service
1050		
1060	- Temperature of the	- Switch off the machine and let it cool down
	drive unit is exceeded	
1061	- Temperature of the	- Switch off the machine and
	drive unit is undershoot	regard chapter: "Operating conditions"
1070-1072	- short time power	- Press and unlock the emergency Stopp
4000 4000	interruption	button
1080-1083	- Hardware error	- Inform the technical service
1084	- motor switch has	- Switch off the machine, wait approx.
	been activated during	2 - 3 minutes and switch it on again
4000	processing	
1300	- Hardware error	- Inform the technical service
1301	- Error in voltage	- Check the voltage supply
	supply	
4000	- Hardware error	Objects the greatening arrange to be to see
1303	- motor power cable	Check the motor power cable between
4005	- Hardware error	connectors X161 and X361
1305	- Hardware error	- Inform the technical service
1306	- Hardware error	- Switch off the machine, wait approx.
4007	Tarananatura of the	20 minutes and switch it on again
1307	- Temperature of the control unit is	- Switch off the machine and let it cool down
	exceeded	

Problem / Error code	Reason	Retification
1308	Motor temperatureHardware error	- Switch off the machine and let it cool down
1309	- Hardware error	- Check the data cable DU between the connectors X162 and X362
1310-1342	- Hardware error	- Inform the technical service

To switch off the error message: Switch off the machine by the main switch (1.1).

If the error messages still appear again after switching off and on the machine by the main switch (1.1) please inform the technical service.

Attention! Repair of electric devices are only allowed by qualified personnel. Based on not qualified repairs substantial risks can happen

Please inform the technical service in case of defective or a sending back.

In every case state the serial number and the cause of the error or the error code.

7.2 Contact Service

Taurox e. K.

Service Am Viechtberg 6 94344 Wiesenfelden Germany

Phone: +49 9966 9020248 Phone: +49 9966 9020245 Fax: +49 9966 9020249

E-Mail: service@gewindebearbeitung.de

Note!

To avoid transport damages send the machine back in the original packaging.

Transport damages caused of improper packing the company **Taurox e. K.** is not liable for.

8 Servicing

Danger: Switch off the machine and cut it from the power supply before doing maintenance work.

8.1 General maintenance work

- Keep the machine and the cables free of permanent contamination.
- Do not clean the machine with aggressive cleaning compounds.

Attention: Do not use compressed-air to clean the machine.

8.2 Change air filter

- Check the air filter every 6 months to contamination and change it if neccessary.
- Replace the air filter every 2 years.

Air filter: Air incoming (3.5) article no.: K056A Air filter: Air output (3.4) article no.: K124A

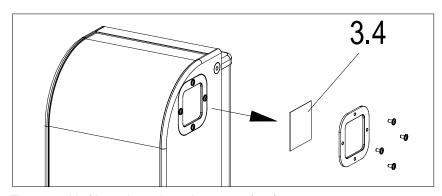


Fig.: 8.1 Air filter changing air output (3.4)

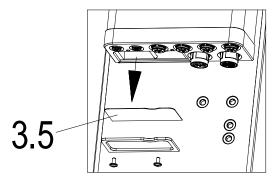


Fig.: 8.2 Air filter changing air incoming (3.5)

9 Wiring diagramn

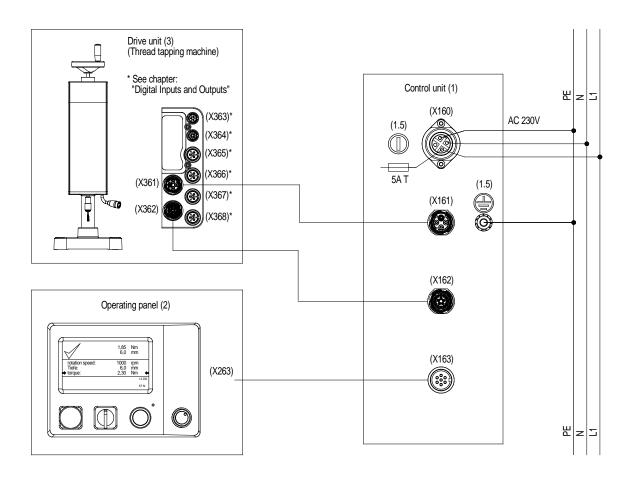


Fig.: 9.1: Connection diagram Tauro 120 and Taurox 300 /400 / 900

(See chapter: "Electrical Installation")

10 Appendix A: Accessories

• Collet inserts ER11 (Tauro 8)

• Collet inserts ER20 (**Tauro 83 /120** with Axial compensation)

• Quick change inserts size 0 (**Tauro 25**)

• Quick change inserts size 1 (Tauro 83 /120 / Taurox 300)

• Quick change inserts size 2 (Taurox 400 / 900)

• Quick change holder size 1 for Taurox 400 / 900

Quick change holder size 2 for Taurox 300

- Collet holder ER11 for Tauro 25
- Collet holder ER25 for Tauro 83 / 120
- Collet holder ER20 with Axial compensation +/- 0,7 mm for Tauro 83 / 120
- Spindle feed system
- Height adjustment (column) with longer travel
- Minimum lubricant unit 2V with lubricant pulse and air pulse
- Minimum lubricant unit 3V with lubricant pulse, air pulse and air cleaning pulse
- Signalbar green, yellow and red for optical quality evaluation in the field of view of processing
- Signal light column green, yellow, red and horn for quality evaluation
- Additional push buttons selection for parameter data base
- Key switch with locking of the user interface
- External operating lock (input 24 V DC)
- Connection for external emergency stop and motor lock on control unit
- Automation connection via digital inputs and outputs
- Ethernet interface for control unit
- TauroView software for PC to visualize the required torque and optimize the processing parameters
- Customized machine software
- Custom Modbus for automation
- Customized cable lengths
- Adjustable Multi-Spindle Heads for two threads
- Wall mounting kit for control unit

11 Appendix A1: Quick change inserts

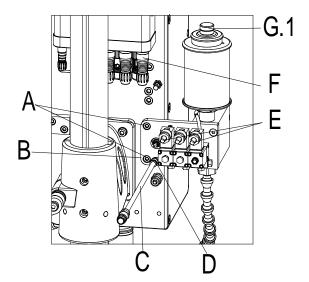
Insert	tap	tap	Quick change system		
Size	DIN 371	DIN 374/376	Tauro® 25	Tauro® 83/120	Taurox® 400/900
Ø / 🗆				Taurox® 300	
			Size 0	Size 1	Size 2
2,5/2,1	M 1 - 1,8	M 3,5	X	X	
2,8/2,1	M 2 - 2,6	M 4	X	X	
3,15/2,5			X	X	
3,5/2,7	M 3	M 4,5 - 5	X	X	
3,55/2,8			X	X	
4,0/3,0	M 3,5		X	X	
4,0/3,15			X	X	
4,5/3,4	M 4	M 6	Х	Х	
5,0/4,0			Х	Х	
6,0/4,9	M 4,5 - 6	M 8	Х	Х	Х
6,3/5,0			X	X	X
7,0/5,5	M 7	M 9-10	Х	Х	X
8,0/6,2	M 8	M 11	X	X	X
9,0/7,0	M 9	M 12		X	X
10,0/8,0	M 10			X	X
11,0/9,0		M 14		Х	X
11,2/9,0				Х	X
12,0/9,0		M 16		X	X
12,5/10,0				Х	X
14,0/11,0		M18			X
14,0/11,2					X
16,0/12,0		M20			Х
16,0/12,5					X
18,0/14,0					X
18,0/14,5		M22-M24			X

⁻ Adaptor to reduce Size 1 auf Size 0

⁻ Adaptor to reduce Size 2 auf Size 0

⁻ Adaptor to reduce Size 2 auf Size 1

12 Appendix A2: Minimum lubricant unit

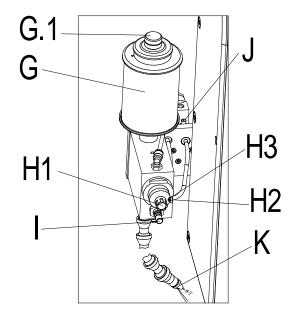

lubricant pulse, air pulse, air cleaning pulse

Scope of delivery

- Minimum lubricant unit (B)
- Attachment screw (A)
- Air tube with quick fitting coupling (C)

Installation

- Mount the lubricant unit (B) with the screws (A) at the rear side of the machine.
- Connect the electrical connection line (E) with the connector (F) with the machine.
- Connect the compressed-air hose (C) with the fitting (D).
- Connect the compressed-air hose (C) to the commpressed-air.
- Compressed-air (58 87psi / 4 6bar) cleaned with steam trap!



Commissioning

- (G) Lubricant tank
- (G1) Cover for lubricant tank
- (H1) Flow controller for dosing pump
- (H2) Clamp lever for quantity controller
- (H3) Indicator dose quantity
- (I) Adjusting screw for lubricant air
- (J) Adjusting screw for air output
- (K) Nozzle for lubricant and air

Wearing eye protection is obligatory!

• Set in the main menu/lubricant settings of the operation unit (2) the desired parameters:

- Lubricant pulse: Time of lubricant pulse. (delay after start)

- Air pulse: Time for the air which takes the forwarded lubricant by the air pulse.

The lubricant will be sprayed by this.

- Blow out pulse: Time for the blow out pulse after operation or chip clearance with

chip clearance throw out depth.

D 0,2 s □ 100% D 0,3 s □ 32 | D 0,7 s □ 0.7 s Display in the parameter area::

C3 Lubricant pulse

C4 Air pulse

C5 Blow out pulse

Open the cover (G1) of the lubricant tank and fill in the lubricant. Close cover (G1).

• **Bleeding:** Open the clamp lever (H2) and set the quantity control (H1) approx the value 4 to advance enough lubricant.

Turn on the following function:

Main menu/Lubricant settings/Lubricating pulse/Test continuous pulse. When the lubricant is delivered from the nozzle (K), turn the flow control knob (H1) to the desired value and clamp it with the clamping lever (H2).

Lubricant pulse: The lubricating impulse delivers a small amount of lubricant through a
dosing pump. This function forms a <u>drop dosage</u>.
 Function:

The piston pump is charged with lubricant in the idle state (machine off).

The piston pump is not charged with lubricant when the machine is at rest (machine on).

When a lubricating impulse is given, the piston pump returns and is charged with lubricant. After the set time, the piston pump triggers the lubrication.

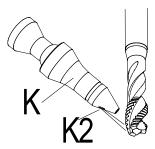
Therefore the set time is a delay of the lubrication.

This method prevents gassing of the lubricant and a continuous function with small quantities. For quantities below 1 a time of 0.1 seconds should be set. If the time is too short, it will not be sufficient for the charging process.

• **Air pulse:** For small quantities (flow regulator (H1) below 0.5) the function main menu/lubricant settings/air impulse on is required, because the drop becomes too small to detach from the nozzle (K) (adhesion force).

You can regulate the air volume with the adjustment screw for lubricating air (I). The adjustment screw (I) should not be more than 2 turns (spray mist formation).

This function in connection with the lubricating impulse forms a <u>spray dosage</u>.

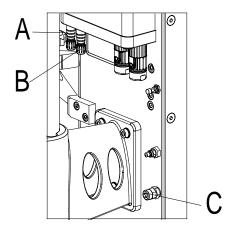

- Air pulse without lubricant pulse: This function can be used with lubricanting materials or for dry processing for cooling.
- Outblow pulse: The outblow pulse is used to clean the tool or to remove chips (Setting: Main menu/Lubricant settings/Blowout pulse).

The quantity of air is controllable by the adjusting screw (J).

 Adjusting of the nozzle: Align the noozle (K) with the blow out drilling (K2) to the bottom.

Adjust the nozzle to the tan hole to ensure a lubrication

Adjust the nozzle to the tap hole to ensure a lubrication during the whole working process.

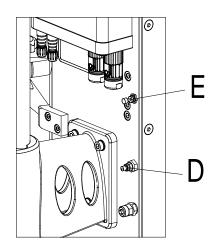

13 Appendix A3: Spindle feed system

Scope of delivery

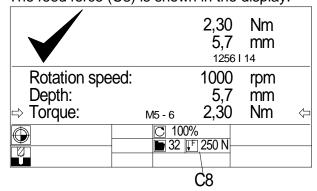
- Air tube with quick fitting coupling
- Foot switch
- Feed is integrated in the thread tapping unit

Installation

- Connect the connector (A) of the foot switch with the machine.
- For sensors you can connect the connector (B) with the machine alternatively.
- Connect the compressed-air hose to the fitting (C) and to the compressed-air. compressed-air (58 - 116psi / 4 - 8bar) cleaned with steam trap!



Commissioning


- (D) Flow control for the speed operation control
- (E) Pressure control for the setting of the feed force

Hand injury warnings respectivly contusives!

• Set at the pressure control (E) the desired feed force. The feed force (C8) is shown in the display.

If the value (C8) is out of the range it becomes red.

If needed set at the nozzle (D) the desired feed force speed.

• Set in the main menu/start setting the desired start function. (See chapter: "Operation")

start with the start button The spindle start by positioning the tool at the workpiece

doing this the start depth will be set to 0,0 mm.

start at The spindle starts after leaving the end position.

workpiece zero point

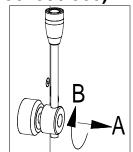
The start depth can be set in the main menu/startup

settings/start at work part surface zero.

start at torque rise The spindle starts after leaving the end position.

The torque identification can be set in the main menu/start settings/start. If the start torque is exceedet the start depth

will be set to 0,0 mm.


Disengage operating lever (only for Taurox 300 /400 / 900)

(A) Disengage operating lever by dragging

(B) Bring operating lever to a vertical position

Warning of hand and crush injuries!

Secure the workpiece against torsional stiffness and unwanted moving.
 Use only suitable clamping devices.

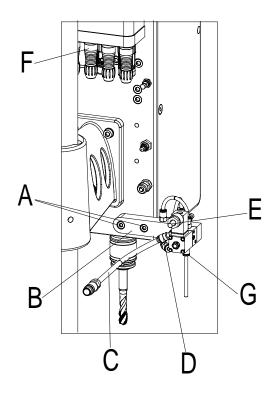
Danger: Workpieces can turn with the tool and threaten peoples and machines.

• Start the feed by the foot switch or by a sensor.

Warning of automatically running!

The start process can be cancelled by a repeated pressing of the foot switch or the start button.

14 Appendix A4: Pneumatic vice

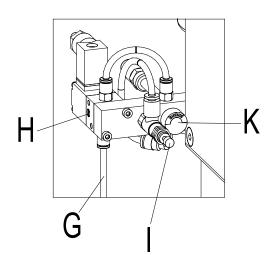

Scope of delivery

- Air tube with quick fitting coupling or air distribution
- Mounting lever with valve and pressure control

Installation

- Fix the mounting lever (B) with the two screw (A) at the rear side of the machine.
- Connect the electrical connection cabel (E) with the connector (F) of the machine.
- Connect the compressed-air hose (C) with the connection (D).
- Connect the compressed-air hose (C) to the compressed air.
- Connect the compressed-air hose of the clamp unit to the air connection (G).

Compressed air (58 – 116 psi / 4 - 8bar) cleaned with steam trap!



Commissioning

- (G) Air connection clamp unit
- (H) Manual action
- (I) Pressure control to set the clamping force
- (K) Pressure display

Hand injury warnings respectivly contusives!

- Set at the pressure control (I) the desired clamp force.
 With a slot screwdriver you can operate the valve manually.
- The machine sends the signal to clamp after leaving the end position automatically.

15 Appendix C: Breakage of thread tools

This breakage datas are for chipping production of thread tools.

The core diameter of a through whole thread tool is higher than a ground whole thread tool. Thereby the fraction of through whole thread tools are approx. 10% higher.

Breakage list for ground whole thread tools

Thred size	Breakage in Nm		
M0,5	0,02	-	0,07Nm
M0,8	0,07	-	0,10Nm
M1	0,10	-	0,15Nm
M2	0,2	-	0,5 Nm
M3	0,7	-	1,5 Nm
M4	1,3	-	2,2 Nm
M5	3,5	-	8,0 Nm
M6	7,5	-	14 Nm
M8	18	-	35 Nm
M10	50	-	75 Nm

These data are empirical values of tools with different qualities.

At high engine speeds it is recommended to select a low breakage as set value for the breakage.

If you need detailed breakage- and cut data of the thread tools, please ask the producer of the thread tools.

Based on the diversity of the different tools it is not possible to state the values in a list.

Thread tools for non-cutting production (thread former) have are much more stable state because of their construction and missing chip nuts.

Tayrex*